
首頁 > 新聞中心 > 高壓技術<
中試控股技術研究院魯工為您講解:感應倍頻電源測量儀
ZSDBF-15KVA 多倍頻感應耐壓試驗裝置
觸摸方式調節電壓可實現本裝置的多倍頻試驗電壓輸出
參考標準:DL/T 848.4-2004
多倍頻感應耐壓試驗裝置:多倍頻感應耐壓試驗裝置實現各種被試品的預防性交流耐壓試驗和交接性交流耐壓試驗,中試控股滿足35kV及以下電壓等級互感器的感應耐壓試驗我中試控股的感應耐壓試驗裝置采用微機控制
中試控股結合先進的變頻及高速采樣技術設計制造,比傳統的三倍頻發生器效率高,輸出電壓穩定,測量精度高,重復性好,并且可以實現自動升壓、升壓至設定值后自動計時、計時完成后自動降壓的功能,操作極其簡單。
儀器采用背光式大屏幕液晶顯示,全中文操作界面,帶實時時鐘和微型打印機。儀器采用一體化結構,重量輕,便于攜帶。
ZSDBF-15KVA 多倍頻感應耐壓試驗裝置技術指標
工作條件 環境溫度:-10℃~50℃ 相對濕度:30%~90%
供電電源 三相AC380V±10%或AC220±10% 50 Hz±5 Hz
如用AC220供電,功率減半
輸出頻率 30Hz~200Hz 調節細度0.1 Hz
輸出電壓 0~400V正弦波
輸出功率 15KW
最大輸出電壓 400V
最大輸出電流 35A
電壓最小分辨率 0.01V
電流最小分辨率 0.001A
電壓電流精度 ±1%
外形尺寸(mm) 570(長)×400(寬)×350(高)
中試控股儀器重量 約44kg
中頻無刷勵磁同步發電機組
同步發電機組基本原理接線如下圖所示。
同步發電機機組基本原理接線圖
M——異步感應電動機;G——無刷中頻同步發電機;T——升壓變壓器;
L1——鐵芯電抗器;L2——空心電抗器(可用阻波器代替,用于增大補償電抗的容量)
圖中,電源裝置
同補償電抗器、中間升壓變壓器
以及必要的外圍測量設備聯合使
用。電源主要由三相異步電動機和無刷勵磁的中頻同步發電機組
成中試控股中頻發電機組,再配以啟動、控制、測量和保護系統組成。其工作原理為中頻發電機
發出定頻率(250Hz)的單相或三相交流電能,經中間變壓器升壓,同時用補償電抗器
來調整補償被試變壓器的電容性電流,以獲得所需的試驗電壓。這種工作原理和方式可以
得到所需頻率的試驗電壓,電網電源僅用來驅動發電機組和提供直流勵磁電源,使試驗電
源與電網電源實現隔離,從而消除了試驗回路來自電網系統的干擾,無刷勵磁方式也大大
降低了電源本身的干擾水平,因此在做感應耐壓的同時,也可進行局部放電測量。
感應分壓器主要有兩種使用狀態:可作為分壓器使用或與標準電壓互感器級聯使用. 下面分別對這兩種使用狀態進行說明。
1.使用感應分壓器校電壓互感器(作分壓器使用)
感應分壓器校驗電壓互感器接線圖
使用感應分壓器校驗電壓互感器時,按上圖連線,一般感應分壓器相對被檢電壓互感 器準確度而言,標準的誤差可以忽略不計,從電壓互感器校驗儀上可直接讀出被檢電壓互 感器的示值。 (感應分壓器效驗誤差值多為經過折算到一次的誤差值,所以要精確求出被檢互感器的誤 差值時,需要將感應分壓器所給誤差示值進行折算后作為標準修正值進行修正。)
2.與標準電壓互感器級聯校被試電壓互感器
標準電壓互感器與感分級聯校驗被試電壓互感器接線圖
以上為標準電壓互感器與感分級聯校驗被試電壓互感器接線圖,如果標準電壓互感器與被試電壓互感器額定變比不同時,可以用標準電壓互感器與感 應分壓器級聯,測出被檢電壓互感器的誤差。
三倍頻感應耐壓裝置通過施加倍頻電源裝置,以提高繞組間絕緣的試驗電壓,從而達到耐壓試驗的目的。此次中試定制30KVA倍頻試驗變壓器采用分體式結構,試驗變壓器與控制臺自成一體,方便試驗過程中配合被試品隨時移動位置
多倍頻感應耐壓試驗裝置實現各種被試品的預防性交流耐壓試驗和交接性交流耐壓試驗,中試控股滿足35kV及以下電壓等級互感器的感應耐壓試驗;
中試控股考驗交聯橡塑電力電纜、電力變壓器、GIS、互感器、絕緣子、發電機、開關等被試品絕緣承受各種過電壓能力及容性負載的交流耐壓試驗。
步長可以實時調節,任意選擇1V、2V、5V、10V
中試控股技術博士為您解答:無功功率對電壓的影響
電網在進行功率傳輸時,電流將在線路等阻抗上產生電壓損耗△U,假如始端電壓為U1,末端電壓為U2,則電壓損耗計算公式為:△U=U1-U2=(PR+QX)/Un
式中:P----線路傳輸的有功功率(KW)
Q----線路傳輸的無功功率(Kvar)
Un----線路額定電壓(KV)
R、X----線路電阻、電抗(Ω)
若保持有功功率恒定,而R和X為定值,無功功率Q愈小,則電壓損失愈小,電壓質量就愈高。當線路安裝容量為QC的并聯電容器補償裝置后,線路的電壓損耗變為:
△U′=[PR+(Q-QC)X]/Un
可以看出:采取無功補償以后,線路傳輸的無功功率變小,相應地減少了線路電壓的損耗,提高了配電網的電壓質量。
無功功率對線損的影響
無功功率不僅影響配電系統的電壓質量,而且導致了配電系統供電線損的增加。
1.線路
在農用配電網中線路的年電能損耗為:△A=3RI2maxて×10-3=△Pmaxて×10-3=P2Rて×10-3/(U2COS2φ)(KWh)
式中:△Pmax----年內線路輸送大負荷時的有功功率(KW)
Imax---裝置所通過的大負荷電流(A)
て----大負荷損耗時間(h),其值可由年負荷曲線確定。
將功率因數由COSφ1提高到COSφ2時,線路中的功率損耗降低率為:
△P%=[1-(COSφ1/COSφ2)2]×100%
當功率因數由0.7提高到0.9時,線路中的功率損耗可減少39.5%。
2.變壓器
當電壓為額定值時,在農用配電網中變壓器的年電能損耗為:△A=n△P0t+S2max△PKて/(nS2n)(KWh)
式中:△P0----變壓器的鐵損(KW)
△PK----變壓器的銅損(KW)
Sn----變壓器的額定容量(KVA)
Smax----變壓器的大負荷(KVA)
t----變壓器每年投入運行的小時數(h)
n----并聯運行的變壓器臺數
て----大負荷損耗時間(h),其值可由年負荷曲線確定。
由于大負荷損耗時間て與功率因數COSφ有關,當COSφ增大時,輸送的無功功率減少,相應的て值也就減少,因而電網損耗也就明顯降低。
實現無功補償,不僅能改善電壓質量,對提高電網運行的經濟性也有重大作用,應根據各種運行方式下的網損來優化運行方式,合理調整和利用補償設備提高功率因數。對電網進行無功補償時,根據電網中無功負荷及無功分布情況合理選擇無功補償容量和確定補償容量的分布,以進一步降低電網損耗。
實際補償過程中,電容器容量的選擇是一個十分重要的問題,如果我們選擇的容量過小,則起不到很好的補償作用;如果容量選擇過大,供電回路電流的相位將超前于電壓,就會產生過補償,引起變壓器二次側電壓升高,導致電力線路及電容器自身的損耗增加。
無功補償是日常運行中常用、有效的降損節能技術措施,無功分散補償更能實現無功的就地平衡。對降低供電線損,提高配網供電能力,改善電壓質量都有重大意義,所以,在配電網建設與改造中應大力推廣無功補償技術。
快速跳轉